Enhancement of Escherichia coli RecA protein enzymatic function by dATP.
نویسندگان
چکیده
The Escherichia coli recA protein has been shown to hydrolyze several nucleoside triphosphates in the presence of ssDNA. The substitution of dATP for rATP has significant effects on various recA protein biochemical properties. In the presence of dATP, recA protein can invade more secondary structure in native ssDNA than it can in the presence of rATP. The dATP-recA protein complex can compete more effectively with the E. coli ssDNA binding protein (SSB) for ssDNA binding sites compared with the rATP-recA protein complex. Finally, the rate of dATP hydrolysis stimulated by dsDNA is greater than the rate of rATP hydrolysis. These effects, in turn, are observed as alterations in the recA protein catalyzed DNA strand exchange reaction. In the absence of SSB protein, the rate of joint molecule and product formation in the DNA strand exchange reaction is greater in the presence of dATP than in the presence of rATP. The rate of product formation in the dATP-dependent reaction is also faster than the rATP-dependent reaction when SSB protein is added to the ssDNA before recA protein; the rate of rATP-dependent product formation is inhibited 10-fold under these conditions. This nucleotide, dATP, was previously shown to induce an apparent affinity of recA protein for ssDNA which is higher than any other NTP. These results suggest that the observed enhancement of enzymatic activity may be related to the steady-state properties of the high-affinity ssDNA binding state of recA protein. In addition, the data suggest that recA protein functions in NTP hydrolysis as a dimer of protein filaments and that the binding of ssDNA to only one of the recA filaments is sufficient to activate all recA protein molecules in the dimeric filament. The implications of this finding to the enzymatic function of recA protein are discussed.
منابع مشابه
RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization.
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that ...
متن کاملReevaluation of the nucleotide cofactor specificity of the RecA protein from Bacillus subtilis.
The RecA protein from the Gram-positive bacterium, Bacillus subtilis, has been reported to catalyze dATP hydrolysis and to promote strand exchange in the presence of dATP but to have no ATP hydrolysis or ATP-dependent strand exchange activity (Lovett, C. M., Jr., and Roberts, J. W. (1985) J. Biol. Chem. 260, 3305-3313). The well characterized RecA protein from Escherichia coli, in contrast, cat...
متن کاملEnhancement of Solubility and Specific Activity of a Cu/Zn Superoxide Dismutase by Co-expression with a Copper Chaperone in Escherichia coli
Background: Human Cu/Zn superoxide dismutase (hSOD1) is an antioxidant enzyme with potential as a therapeutic agent. However, heterologous expression of hSOD1 has remained an issue due to Cu2+ insufficiency at protein active site, leading to low solubility and enzymatic activity.Objectives:The effect of co-expressed human copper chaperone (hCCS) to enhance the solubility and enzymatic act...
متن کاملDirected Evolution of RecA Variants with Enhanced Capacity for Conjugational Recombination
The recombination activity of Escherichia coli (E. coli) RecA protein reflects an evolutionary balance between the positive and potentially deleterious effects of recombination. We have perturbed that balance, generating RecA variants exhibiting improved recombination functionality via random mutagenesis followed by directed evolution for enhanced function in conjugation. A recA gene segment en...
متن کاملComplementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis.
The RecA residues Lys248 and Glu96 are closely opposed across the RecA subunit-subunit interface in some recent models of the RecA nucleoprotein filament. The K248R and E96D single mutant proteins of the Escherichia coli RecA protein each bind to DNA and form nucleoprotein filaments but do not hydrolyze ATP or dATP. A mixture of K248R and E96D single mutant proteins restores dATP hydrolysis to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 28 14 شماره
صفحات -
تاریخ انتشار 1989